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ABSTRACT

The aim of this paper is to study the feasibility of using (irreversible) entropy production as driving force for a moving
mesh. Such a method should be able to capture or track physical phenomena such as viscous and thermal boundary
layers, shock waves and regions with chemical reactions.
A brief outline is given for the FEM-ALE approach, which forms the basis of the moving mesh method. Mesh velocity
is a degree of freedom when the Arbitrary-Lagrangian-Eulerian (ALE) formulation for governing PDEs is used. A
Finite Element Method (FEM, viz. Galerkin’s method) is applied as discretization of the spatial domain.
Two methods will be suggested for determination of mesh motion: mesh displacement method and mesh velocity
method. Both methods have an analogy with respectively solid mechanics and fluid mechanics. The general PDE
for mesh motion is based on the equation of motion used in continuum mechanics. Body force for mesh motion
is determined by temperature and the gradient of entropy production. This implementation introduces a coupling
between mesh motion and the governing physics.
The suggested method is implemented in the commercial software package Femlab

r (release 3.0a). A heat conduction
problem in a 1-dimensional geometry is selected as physical problem. Numerical solutions for both mesh methods
are shown. For the mesh velocity method the geometry is also extended with a prescribed moving boundary. Finally,
there are some remarks about stabilization methods for convection-dominated problems.
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1. INTRODUCTION

A moving mesh method has a fixed mesh topology
(i.e. number of vertices and connectivity), while only
the mesh vertices move with time. Such a mesh is
only useful in combination with non-stationary physi-
cal problems. In this paper, an adaptive mesh is con-
sidered to be a modification of the mesh topology and
is often used for stationary physical problems. Such a
method could be used to create an initial mesh for a
moving mesh problem. Since the main topic of this pa-
per is determination of mesh motion, the actual phys-
ical problem is of less importance. The focus will be
on physical problems consisting of arbitrary transport
phenomena.

The physical problem is, in general, governed by a
set of conservative laws (e.g. mass, linear momentum
and energy). The required constitutive relations are,
among other criteria, based on the entropy principle
(see references on thermoelasticity, e.g. [1, 2, 3]). This
paper will study the feasibility of using entropy pro-
duction as driving force for a moving mesh method.
The objective is to obtain a governing PDE for a mov-
ing mesh that is capable of both refining the mesh
at interesting regions and handling arbitrary moving
boundaries. An advantage of using only PDEs for de-
termining mesh motion is the lack of iteration loops
required for finding an optimal mesh (such as with
error estimation methods). One of the criteria that
should be checked is whether the mesh stops mov-
ing if an equilibrium state is obtained. The arbi-



trary Lagrangian-Eulerian (ALE) formulation includes
a moving mesh into the system of PDEs, so there are
no projection errors due to remeshing.

The paper starts with a brief outline of the FEM-ALE
approach, which introduces mesh velocity (and there-
fore mesh motion) as degree of freedom. Mesh motion
is determined by solving an additional set of PDE(s)
similtaneous with the set of physical PDE(s). The
next section will introduce various PDEs for mesh mo-
tion based on physical analogies and concepts. Some
of these PDEs are implemented in the commercial soft-
ware package Femlab

r in combination with a non-
stationary convection-diffusion problem. Numerical
results are shown for both fixed boundaries and a pre-
scribed moving boundary. This section consists also
of a brief introduction to combining the suggested ap-
proach with stabilization methods.

2. FEM-ALE APPROACH

The FEM-ALE approach is a method for numerically
approximating master balance laws for an arbitrary set
of quantities φ. These quantities can change due to
any combination of surface sources jφ and volumetric
sources σφ , viz.
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Symbol n denotes the outwards pointing normal vec-
tor of surface element dS. Integrands in above equa-
tion depend on moving spatial coordinate y and time
t. The integration limits are determined by a moving
material configuration Ωz , where the corresponding
spatial coordinates are specified by physical motion
(see also figure 1)

y = χ(z, t) = χ|t (z) (2)

A bar with a subscript is used to denote that the sub-
script is fixed.

The arbitrary Lagrangian-Eulerian formulation ([4, 5,
6]) is used to obtain an equivalent localized system of
equations (PDEs) of the master balance laws for cal-
culation domains with arbitrary moving boundaries.
The system of PDEs is spatially discretized by a finite
element method (i.e. Galerkins method, [7, 8]) to ob-
tain a system of ODEs. These equations are integrated
numerically with respect to time (see also [9]).

2.1 Arbitrary Lagrangian-Eulerian formu-
lation

The governing concept of the ALE formulation is to let
both a spatial configuration Ωy and a material configu-

Figure 1: Relation between (moving) configurations and
motions.

ration Ωz move and deform independently over a fixed

referential configuration Ωx. This introduces the spa-
tial motion ξ as additional degree of freedom, which
is independent of the physical motion χ. Figure 1
shows the relation between the various configurations
and motions. It is emphasized that both spatial and
physical motion map onto the spatial configuration,
but they have different spatial coordinates.

Define physical velocity v as material derivative (i.e.
time derivative at constant material coordinate z) of
physical motion, or

∂

∂t
χ(z, t)

∣
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z

= v(χ(z, t), t) = v(y, t). (3)

Similar, spatial velocity v̆ is defined as time derivative
at constant referential coordinate x
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ξ(x, t)

∣
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∣

∣

x

= v̆(ξ(x, t), t) = v̆(y, t). (4)

A generalised form of Reynolds transport theorem for
an arbitrary region Ω(t) can then be derived for the
ALE formulation (see [9])

∂

∂t

∫

Ω(t)

φ dV =

∫

Ω(t)

∂φ

∂t
+ φ(∇ · v̆) + ∇ · [(v − v̆) ⊗ φ]dV . (5)

Notice that the single term of the left-hand side in
equation (1) is transformed into three terms. Material
derivative of quantity φ is converted in a combination
of: local time derivative, volume dilatation (shown by
divergence of spatial velocity) and convective flow.

Above equation changes the sequence of time differen-
tiation and volume integration. The master balance
law (1) can be written as a single integral equal to



zero by using above kinematical relation. Since the
integration is over an arbitrary volume, the integrand
has to be equal to zero. This yields an equivelent set
of PDEs of equation (1), i.e.

∂φ

∂t
+φ(∇· v̆)+∇· [(v − v̆)⊗φ] = −∇·jφ +σφ . (6)

It is convenient to introduce the relative derivative as
new differential operator by

Dφ =
∂φ

∂t
+ (v − v̆) · ∇ ⊗ φ, (7)

such that equation (6) can be written as

Dφ = −∇ · jφ + σφ − φ(∇ · v). (8)

The term denoting volume dilatation in equation (6)
is in above equation considered to be a source term,
because a changing geometry results in a change of
density φ. Note that it consists of divergence of phys-

ical velocity instead of divergence of spatial velocity.

2.2 Finite element method

The ALE-formulation can be applied to domains with
arbitrary moving and deforming calculation domains
(i.e. geometries). The FEM-ALE approach combines
the ALE-formulation with a finite element method to
obtain a moving mesh method.

Equation (8) yields the problem statement in strong
form and will be written in the corresponding weak
form. Introduce a class of trial solutions S and a class
of weighting functions V. The weak form of equation
(8) is obtained by multiplying with an arbitrary weight
function w ∈ V and integrating over an arbitrary spa-
tial volume. The weak form yields then, ∀w ∈ V find
φ ∈ S such that

∫
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w · Dφ dV+

∫
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t
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(∇⊗ w) · jφ dV =

∫
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w · [σφ − φ(∇ · v)] dV+

∫

ξ|
t
(∂Ωx)

w · hφ dS. (9)

Symbol hφ denotes a Neumann boundary condition
on some part of the boundary (∂Ωy,N ⊂ ∂Ωy ) and
originates from integration by parts.

The semi-discrete Galerkin formulation [7, 10] is ap-
plied to the weak form to get a spatial discretized for-
mulation. This yields a system of first order ODEs
with respect to time that can be (numerically) inte-
grated. Equations of the form given by equation (9)

can be implemented directly in the commercial soft-
ware package Femlab

r for domains with fixed bound-
aries. An algorithm for the moving boundaries is im-
plemented in Matlab

r, using the Matlab
r-interface

of Femlab
r ([9, 11]).

Both the master balance laws and the weak form are
with respect to (moving) spatial coordinates. Integra-
tion limits of the weak form are determined by spatial
motion, instead of physical motion, so moving and
deforming geometries can be described. Partition of
weak form transforms spatial motion and velocity into
mesh motion and velocity. Aim of this work is to ob-
tain a generalized relation (PDEs) for determination of
mesh motion (i.e. ξ), where the basic idea is to govern
mesh movement by physics (viz. entropy production).

3. PDE FOR MESH MOTION

Mesh motion is a degree of freedom in the FEM-ALE
approach. In this paper a model for mesh motion is
suggested, that is based on similarities with physics:

• Mesh motion is governed by a law of dynamics,
analogous to continuum mechanics (i.e. Euler’s
first law, Cauchy’s first law).

• Linear momentum of mesh elements is defined
similar to linear momentum of a material volume.

• Gradient of entropy production acts as body
force. The underlying idea is that a region with a
large gradient of entropy production should have
a refined mesh, while a region with a low gradi-
ent of entropy production could do with a course
mesh. Entropy production is used, since it is a
generic quantity arising for all non-ideal physical
phenomena. Though the actual value of entropy
production can not be predicted, it’s sign is al-
ways positive. The gradient of entropy produc-
tion can be either positive or negative and can
thus result in both refining and coarsening of the
mesh.

• Traction acts as a resisting force (contact force)
to motion or deformation of mesh elements. The
mode of resistance depends on the model for trac-
tion (or stress tensor), which could be based on
similarities with either solid mechanics or fluid
mechanics.

This model will be more elaborately introduced in the
proceeding section, which is followed by both a solid
mechanics approach and a fluid mechanics approach.

3.1 Basic idea

Define linear momentum p of an arbitrary mesh ele-
ment Ωe

x as product of some multiplier ψ and mesh



velocity ξ̇, viz.

p(t) =

∫

Ωe
x

ψ(x)ξ̇(x, t) dV . (10)

Evaluate time derivative of linear momentum as ref-
erential derivative of the RHS integral and use time
independence of multiplier ψ and configuration Ωe

x to
get

dp

dt
=

∫

Ωe
x

ψ
∂

∂t
ξ̇

∣

∣

∣

∣

x

dV . (11)

Since the physical problem is specified by spatial coor-
dinates, it is convenient to transform above equation
to these coordinates using the change of variables the-
orem. Define multiplier ψ as product of mass density
and the Jacobian determinant of spatial motion

ψ
(

ξ
−1(y, t)

)

= ρ(y, t) det(Jξ)(y, t). (12)

Time derivative of linear momentum of mesh elements
can then be written as

dp

dt
=

∫

ξ|
t
(Ωe

x
)

ρ
∂v̆

∂t

∣

∣

∣

∣

x

dV , (13)

where the integrand is with respect to spatial coordi-
nates and time. This relation can be interpreted as
using the Lagrangian approach for mesh elements, or
the same set of geometric points is followed through
space (this is analogous to the material derivative).

Euler’s first law of dynamics is chosen as governing
equation for mesh motion

dp

dt
= f , (14)

where the integration limits are determined by spatial
motion instead of physical motion (see figure 1). The
total force f acting on a mesh element consists of two
parts: a body force defined by

f
b(t) =

∫

ξ|
t
(Ωe

x
)

ρb̆ dV (15)

and a contact force governed by surface traction T̆

f
c(t) =

∫

ξ|
t
(∂Ωe

x
)

T̆ dA =

∫

ξ|
t
(∂Ωe

x
)

n · τ̆ dA. (16)

For equation (16)2 it is assumed that Cauchy’s theo-
rem is valid for mesh motion (e.g. see I-Shih Liu [1]).
Substitution of equations (13), (15) and (16) in Euler’s
first law (14) yields

ρ
∂v̆

∂t
= ∇ · τ̆ + ρb̆. (17)

This is essentially the equation of motion used in con-
tinuum mechanics, but it is here applied to govern
mesh motion.

Any non-ideal physical phenomena (viz. irreversible)
results in an amount of entropy production. This
can be used to identify interesting regions in domains
with physical (transport) phenomena. Regions with a
higher entropy production probably require a refined
mesh for a proper description. Starting with either
a uniform mesh, for problems with no initial physical
phenomena, or an adaptive mesh, for problems with
initial physical phenomena, mesh motion can be gov-
erned by a spatial variation of entropy production.

The second law of thermodynamics can be written as
localized master balance law (see also [12, 13])

ρDŝ = −∇ · jS + σS , (18a)

where the volumetric rate of entropy production σS is
always larger than zero

σS > 0, ∀y ∈ Ωy , t ∈ R. (18b)

It will be shown how the volumetric rate of entropy
production follows from the governing physical equa-
tions. This example also shows that a moving mesh
does not result in additional entropy production.

Consider an arbitrary problem with transport phe-
nomena governed by conservation of mass, linear mo-
mentum and total energy. Use the master balance law
for specific internal energy û instead of the conserva-
tive law for total energy, so the problem is specified by
(e.g. see Bird, Stewart and Lightfoot [14])

Dρ = −ρ∇ · v, (19)

ρDv = −∇p+ ∇ · τ , (20)

ρDû = −∇ · q − p∇ · v + τ : ∇⊗ v. (21)

By selecting this set of equations, the form for entropy
flux jS and volumetric rate of entropy production σS

follow by thermodynamic considerations.

Combine the Gibbs relation for internal energy with
the differential operator introduced in equation (7).
Multiply by mass density ρ to get

ρDû = ρTDŝ− ρpDv̂. (22)

Realise that ρv̂ = 1, so the derivative of specific vol-
ume v̂ can be written as

ρDv̂ = −v̂Dρ = ∇ · v, (23)

where continuity equation (19) is used. Substitution
of equations (23), (21) and (18a) in the Gibbs relation
yields

−∇ · q − p∇ · v + τ : ∇⊗ v =

− T∇ · jS + TσS − p∇ · v. (24)



By solving for entropy flux and entropy production the
following relations can be obtained

jS = −
q

T
, (25a)

σS = −
q · ∇T

T 2
+

τ : ∇⊗ v

T
. (25b)

Notice that mesh velocity does not appear in above
terms, so governing mesh motion by the ALE formu-
lation does not introduce additional entropy produc-
tion.

The number of spatial dimensions of the calculation
domain (nsd) determines the number of PDEs for mesh
motion (i.e. equation (17)). As stated before, spatial
variation of the volumetric rate of entropy production
will be used as driving force for mesh motion. Define
the general form for body force density b̆ governing
mesh motion as a multiplier times gradient of volu-
metric rate of entropy production, i.e.

b̆ =
θT

ρ
∇σS. (26)

A combination of a time constant θ, temperature T
and mass density ρ is used as multiplier, because this
yields consistent units for the equation of mesh mo-
tion. The time constant will be equal to one for all
presented results and therefore omitted in the remain-
der of this paper. Since both temperature and mass
density are always larger than zero, they do not dis-
turb any direction dependence of the body force den-
sity.

One of the remaining issues is selecting the form for
surface traction T̆ . There are two approaches, which
will result in different forms of the PDEs for mesh mo-
tion. Similar to elastic materials in solid mechanics,
a stress-strain relation can be used. This approach
will be called the mesh displacement method (MDM),
since it yields a governing equation for mesh displace-
ment. The second approach is based on an analogy
to fluid mechanics, where a stress-strain rate relation
is used for traction. Since this yields PDEs for mesh
velocity, this will be called the mesh velocity method
(MVM). Summarizing, the model for surface traction
determines the final form of the moving mesh method:

T̆ mdm = T (∇⊗ ŭ), (27)

T̆ mvm = T (∇⊗ v̆). (28)

Notice that this issue corresponds to determination of
a constitutive relation (here for mesh motion), which
explains the close resemblance of this work with ther-
moelasticity.

3.2 Mesh displacement method

Assume a mesh behaves like an isotropic, elastic ma-
terial (e.g. rubber), so the analogy with continuum

mechanics is further refined to solid mechanics. Mesh
motion is determined in the form of mesh displace-
ment, which is defined as function of (Cartesian) spa-
tial coordinates and time by (see also figure 1)

ŭ(y, t) = y − ξ
−1(y, t) (29)

Mesh displacement could be defined by using referen-
tial coordinates, but since the master balance law is
with respect to spatial coordinates above form is pre-
ferred. The current position of mesh vertices can be
determined by above equation or by (numerical) in-
tegration of mesh velocity. Notice that mesh velocity
has to be determined for evaluation of the convective
velocity (see equation (7)).

In the classical theory of elasticity often the assump-
tion is made that deformations are small, or

||∇ ⊗ ŭ|| ≪ 1. (30)

This results in the following form for the (infinitesimal)
strain tensor

ĕ =
1

2

[

∇⊗ ŭ + (∇⊗ ŭ)T
]

. (31)

This assumption also allows to neglect the difference
between the Cauchy and Piola-Kirchhoff stress tensors
(see Salençon [3, p. 334-337]).

For a linear, elastic material, the (Cauchy) stress ten-
sor τ is modeled by the generalized Hooke’s law

τij = cijklekl, (32)

where cijkl is the elasticity tensor (4th order). Above
equation is only valid for homogeneous elastic con-
stants (no dependence on position and time) and
an initial stress-free and undeformed state. For an
isotropic material the elastic constants can be speci-
fied by

cijkl = µ(δikδjl + δilδjk) + λδijδkl, (33)

where µ and λ are the Lamé moduli and δij is the
Kronecker delta.

Since traction is a function of mesh displacement, the
time derivative of linear mesh momentum is written as
second time derivative of mesh displacement. So the
governing PDE(s) for the mesh displacement method
yields

ρ
∂2ŭ

∂t2
−∇ · [2µĕ + λ(tr ĕ)δ] = T∇σS, (34)

which is a wave equation with respect to the spatial
coordinates. The Variational Arbitrary Lagrangian-
Eulerian method presented by Thoutireddy [15] uses
the same general form, but is evaluated for referential
coordinates.



3.3 Mesh velocity method

The mesh velocity method (MVM) is a more straight-
forward implementation of the presented ideas. Ba-
sic assumption of the MVM is a diffusive character
of mesh motion, where mesh motion is specified by
mesh velocity. For a 1D problem, this assumption can
be modeled by an analogy with Fourier’s law for heat
conduction

τ̆ = −q = k̆mvm

∂v̆

∂y
, (35)

For multi-dimensional problems, a stress tensor anal-
ogous to an incompressible Newtonian fluid could be
interesting, i.e.

τ̆ = k̆mvm

[

∇⊗ v̆ + (∇⊗ v̆)T
]

. (36)

Both analogies have only one parameter, which will be
called mesh diffusivity k̆mvm.

Above analogy can be generalized to the following
form of the governing PDE(s) for mesh motion

ρ
∂v̆

∂t
−∇ ·

{

k̆mvm ·
[

∇⊗ v̆ + (∇⊗ v̆)T
]}

= T∇σS,

(37)
where mesh diffusivity k̆mvm can be either a scalar
or second order tensor (for an anisotropic mesh be-
haviour). Obviously, more elaborate models for sur-
face traction can be selected as analogy, but this will
introduce more mesh parameters.

An arbitrary moving boundary is implemented by
specifying a Dirichlet boundary condition for mesh ve-
locity

v̆(y, t) = v̆D(t), ∀y ∈
(

ξ|t (∂Ωx)
)

D
. (38)

An initial moving mesh is specified by a corresponding
initial condition, or

v̆(y, 0) = v̆0(y), ∀y ∈ ξ|t (Ωx). (39)

Mesh position is determined by an explicit algorithm

y(tn+1) = y(tn) +

∫ tn+1

tn

v̆(τ ) dτ. (40)

Notice that since the equation of mesh motion solves
for mesh velocity, the convective velocity can be de-
termined directly.

4. NUMERICAL EXAMPLE

The feasibility of the suggested approach for a physical
moving mesh will be shown by a numerical example. A
rather artificial physical problem will be used to show
some issues of the presented ideas. Assume a uniform,
incompressible fluid flow in tube with constant cross-
section. This problem can be modeled by the conser-
vative law for total energy applied to a 1-dimensional
geometry.

4.1 Problem statement

Governing PDE is the quasi-linear form of the energy
balance, without mechanical work (stationary, incom-
pressible, homogeneous flow, so there are no explicit
terms for volume change and shear stresses)

ρ ĉ|V
∂T

∂t
+ ρ ĉ|V (v − v̆)

∂T

∂y
= −

∂q

∂y
, (41)

which is equation (21) combined with the ideal gas
equation of state. This equation has to be comple-
mented by a constitutive relation for heat transfer,
boundary conditions and initial conditions.

As constitutive relation for heat transfer due to con-
duction Fouries’s law is applied (e.g. see Bird et al

[14]),

q = −k
∂T

∂y
(42)

It is assumed that the fluid enters the tube at a low
temperature and exits at a higher temperature. This
yields the following boundary conditions

T (0, t) = T0, T (L, t) = T0 + ∆T, (43)

with ∆T = 25 K. An interesting initial condition is
chosen, i.e.

T (y, 0) = T0 +
∆T

2
, ∀y ∈ Ωy . (44)

This selection of boundary conditions and initial con-
ditions results in two thermal boundary layers, where
one of them will move through the domain due to con-
vection of the fluid.

Nitrogen at standard conditions is selected as fluid
(p0 = 1.013 · 105 Pa, T0 = 298.15 K, source Yaws
[16]), which has the following parameters

M = 28.013 gmol−1,

ρ = 1.2498 kgm−3,

k = 0.02475 W m−1K−1,

c̃|p = 29.02 J mol−1K−1.

Specific heat capacity at constant volume ĉ|V for an
ideal gas yields then

ĉ|V =
c̃|p −R

M
= 0.7361 J kg−1K−1.

Default value for the fluid velocity is v = 0.1 ms−1,
so the problem is slightly convection-dominated.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: Default initial mesh for moving mesh method.



Overall length of the tube is L = 1 m, which is spa-
tially discretized into a uniform initial mesh (mesh size
hx = 0.05 m, see figure 2). Fluid velocity determines
the length of the time interval t ∈ [0, 1/v]. The non-
stationary numerical solution approximates then the
stationary solution of the problem (which is consid-
ered to be the equilibrium state). Default value for
the time step ht = 0.01 s, but it depends on the selec-
tion of fluid velocity v and temperature difference ∆T
between both boundaries.

Figure 3: Numerical solution of temperature at various
time steps (t ∈ [0, 10]) for a fixed mesh with default pa-
rameters. Dotted line shows initial condition and dashed
line analytical solution of stationary problem.

Figure 3 shows the numerical solution of the speci-
fied problem on a fixed mesh. Though the problem is
rather artificial, it is interesting since it has two ther-
mal boundary layers. These boundary layers should
be captured by the moving mesh, including the mo-
tion of the left boundary due to convection. When the
left thermal boundary layer is merged with the right
boundary layer, the steady state solution of equation
(41) is reached (dashed line in figure 3). This can be
considered as an equilibrium state, where the mesh
should no longer move and should have reached an
optimal configuration.

4.2 Physical moving mesh

Either equation (34) or equation (37) is used to govern
mesh motion. This requires determination of the vol-
umetric rate of entropy production due to irreversible
heat transfer (see equation (25b)),

σS = −
q · ∇T

T 2
(45)

With substitution of Fourier’s law, the gradient of
the volumetric rate of entropy production due to heat

transfer yields

∇σS = ∇

[

k

T 2
∇T · ∇T

]

(46)

or, for Cartesian coordinates, in tensor notation

∂σS

∂xi
=

∂

∂xi

[

k

T 2

(

∂T

∂xj

)2
]

. (47)

For a homogeneous and time independent thermal con-
ductivity k this can be evaluated to

∂σS

∂xi
=

2k

T 2

[

∂T

∂xj

∂2T

∂xi∂xj
−

1

T

(

∂T

∂xj

)2
∂T

∂xi

]

. (48)

Since a 1-dimensional geometry is used in this exam-
ple, above equation yields the following form for the
body force on mesh elements

ρb̆ = T
∂σS

∂x
=

2k

T

∂T

∂x

[

∂2T

∂x2
−

1

T

(

∂T

∂x

)2
]

. (49)

Figure 4: Body force on mesh elements based on entropy
production near both boundaries at various time steps for
a fixed mesh (v = 0.1 ms−1, t ∈ [0, 10]).

Time evaluation of body force on mesh elements on a
fixed mesh is, for the specified problem, shown in figure
4. Due to the low value of (convective) fluid velocity
with respect to the value for heat conductivity k, the
figure is nearly point symmetric about the middle of
the geometry.

Implementation of above equation is a bit tedious
within the framework of Femlab

r due to the second
order spatial derivative of temperature. The general
form of Femlab

r implements a PDE as (e.g. see [17])

dα
∂u

∂t
+ ∇ · Γ = f . (50)

Gradient of the product of two scalars can be written
as

∇ (TσS) = T∇σS + σS∇T (51)



and gradient of a scalar s can be written as a diver-
gence by using the Kronecker delta δ

∇s = ∇ · (sδ). (52)

So the govern PDE for mesh motion becomes (for mesh
velocity method)

ρ
∂v̆

∂t
+ ∇ · [−TσSδ − τ̆ ] = −σS∇T. (53)

This form is consistent with the general form of Fem-

lab
r. Notice that this equation couples mesh motion

directly to irreversible physical phenomena.

4.3 Results

In this subsection various cases are evaluated of the
same physical problem. Both the mesh displacement
method and the mesh velocity method have a single
parameter that determines the resistance to motion
and deformation.

Mesh displacement method

The mesh displacement method (MDM) is based on
similarities with the classical theory of linear elastic-
ity. Due to the assumption made in equation (30),
only small displacements are allowed. In order to
get small values for the body force density, the tem-
perature difference between both boundaries is set to
∆T = 2.5 · 10−2 K.

For a 1D geometry, the stress tensor τ̆ can be simplified
to

τ̆ = k̆mdm

∂ŭ

∂y
. (54)

Both material parameters λ and µ are combined in a
single mesh parameter k̆mdm.

Figure 5 shows the trajectory of the first interior ver-
tex near both boundaries and the middle vertex (see
figure 2 for mesh). The value of mesh parameter k̆mdm

determines the behaviour of the mesh motion, since it
determines the ratio of body force and surface traction.
There are two modes of behaviour for mesh displace-
ment.

The trajectory shown in figure 5 is obtained by using
a small value for the mesh parameter (k̆mdm < 10−5).
Mesh displacement has, initially, the same sign as
body force density, so the direction of mesh motion
is governed by irreversibilities. With increasing time,
the trajectory begins to show a wave motion due to
the increasing surface traction. For large values of the
mesh parameter (k̆mdm ≫ 10−5), surface traction is
dominant and mesh displacement becomes uncontro-
lable.

Main objective of this implementation is to check
whether the direction of mesh displacement corre-
sponds with the sign of the gradient of the volumetric

Figure 5: Trajectory of first, middle and last interior
mesh vertex. Mesh motion is governed by mesh displace-
ment method with v = 0.1 ms−1, ∆T = 2.5 · 10−2 K,
ht = 0.005 s and k̆mdm = 5 · 10−6 J m−3.

rate of entropy production. The suggested model for
surface traction can not capture a time evolving so-
lution. Because mesh displacement has to be small
(due to equation (30)), the gradient can not change
sufficiently. The restriction can be abolished by imple-
mentation of finite deformations and more elaborated
forms of the stress tensor.

Mesh velocity method

The mesh velocity method is an extension of the
method suggested by the author for domains with
moving boundaries ([9]). Similar problems arise again
in this work. For a 1D geometry both models for trac-
tion are equal, yielding the following equation for mesh
motion

ρ
∂v̆

∂t
+

∂

∂y

[

−
k

T

(

∂T

∂y

)2

− k̆mvm

∂v̆

∂y

]

=

−
k

T 2

(

∂T

∂y

)2
∂T

∂y
, (55)

where mesh diffusivity k̆mvm is the only parameter.

A low value for mesh diffusivity is required to make
the moving mesh fast enough to capture the mov-
ing boundary layer. Figure 6 shows trajectories of
mesh vertices for a low mesh diffusivity (k̆mvm =
0.25 J sm−3). Vertices at the left boundary move to
the left to capture the (thermal) boundary layer. The
same phenomena occurs at the right boundary, where
vertices are contracted to improve the description of
the thermal boundary layer. After 1.5 s all vertices
move to the right and follow more or less the mov-
ing left thermal boundary layer. Mesh motion seems
to comply to the desired mesh motion, but it is still
questionable whether the optimal mesh is obtained.



Figure 6: Trajectory of mesh vertices with mesh motion
governed by the mesh velocity method. Parameters have

default values, mesh diffusivity is k̆mvm = 0.25 J sm−3.

Figure 7: Trajectory of mesh vertices with mesh motion
governed by the mesh velocity method. Parameters have

default values, mesh diffusivity is k̆mvm = 2.5 J sm−3.

One of the requirements for an optimal mesh would be
a non-moving mesh when the equilibrium state is ob-
tained. For the specified problem this means that the
stationary solution (equilibrium state) has to be ob-
tained after a surtain time. Evaluation of the problem
for a long time interval yields problems near the right
boundary. Too many vertices are contracted near the
right boundary and some vertices move outside the
calculation domain. These problems can be prevented
by choosing a higher value for mesh diffusivity. Figure
7 shows trajectories of vertices for a higher value of
mesh diffusivity. The overall behaviour is the same as
for the lower mesh diffusivity, but it is less pronounced.

Mesh velocity method and prescribed moving boundary

As is already indicated in section 3.3, the mesh velocity

method can be used for domains with moving bound-
aries. A moving boundary is implemented by specify-
ing a non-homogeneous Dirichlet boundary condition,
e.g.

v̆(0, t) = 0, v̆(L, t) =
A

2
sin(ωt+ φ). (56)

Above boundary condition is combined with the speci-
fied physical problem, where the following parameters
A = 0.5 m, ω = vπ Hz and φ = 0 rad will be used.

Figure 8: Trajectory of mesh vertices for k̆mvm =
0.25 J sm−3, v = 0.1 ms−1 for a domain with a pre-
scribed moving boundary. Mesh motion is governed by
the mesh velocity method using entropy production as
driving force.

Figure 8 shows the trajectories of mesh vertices when
a moving mesh based on physics is used. The overall
behaviour is similar to the solution with fixed bound-
aries. There seems to be less contraction of mesh ver-
tices near the moving boundary (see also figure 6) and
the vertices at the left boundary move not as fast as
for the fixed boundary case.

It is interesting to compare the result of figure 8 with
the method suggested by the author in earlier work
([9]). Figure 9 shows the trajectories when only the
heat equation is used for mesh motion (viz. no cou-
pling with physics). The same value for mesh diffusiv-
ity is used as in figure 8, which is sufficiently high to
yield a sequence of solutions for the stationary Lapla-
cian equation. This can be observed by the way all
mesh vertices follow the moving boundary.

Stabilized mesh velocity method

For convective-dominated problems, the Galerkin
method provides numerical instable solutions. There
are various stabilization methods to overcome these
instabilities. It will be shown that the suggested ap-
proach can be extended with stabilization methods
known in the literature.



Figure 9: Trajectory of mesh vertices for k̆mvm =
0.25 J sm−3, v = 0.1 ms−1 for a domain with a pre-
scribed moving boundary. Mesh motion is governed by
the heat equation.

Numerical instabilities occur often at regions with a
local (mesh) Péclet number larger than one, or

Pe =
|v|hx

2k
≤ 1. (57)

For the specified problem (h = 0.05, k = 0.02475) the
local Péclet number is almost equal to the convective
velocity. Both convective velocity and mesh size can
change due to a moving mesh, and in any combination
of increasing or decreasing values. E.g., since some
vertices move to the left in the example, the convective
velocity increases and the mesh size decreases. It is
not possible to predict how this effects the stability
criterion for the local Péclet number.

Calculations are performed with high fluid velocities
(v = 100 ms−1), which yield for a fixed mesh a numer-
ical instable solution. The FEM-ALE approach is ex-
tended with the SUPG stabilization method ([18, 19]).
The stabilized weak form for the physical problem

yields, ∀wh ∈ Vh find uh ∈ Sh such that
∫

ξ|
t
(Ωx)

wh
Dφh dV+

∫

ξ|
t
(Ωx)

∇wh · j|φ dV+

nel
∑

e=1

∫

ξ|
t
(Ωe

x
)

τPwhRφh dV =

∫

ξ|
t
(Ωx)

wh
[

σ|φ − φh(∇ · v)
]

dV+

∫

ξ|
t
(∂Ωx)

wh hh
∣

∣

∣

φ
dS. (58)

Symbol nel denotes the number of elements and Ωe
x

the domain corresponding with the eth mesh element.

Differential operator R is the residual of the differen-
tial equation and perturbation operator P , applied to
the weight functions, is for the SUPG method specified
by

Pwh = (v − v̆)∇wh. (59)

Intrinsic time τ is according a paper of Tezduyar and
Osawa [20]. Again, the difference between fluid veloc-
ity v and mesh velocity v̆ is used as convective velocity.
Intrinsic time has then the following form

τ =

(

1

τ r
S1

+
1

τ r
S2

+
1

τ r
S3

)−1/r

(60)

with

τS1 =
hx

2|v − v̆|
, τS2 =

ht

2
, τS3 =

h2
x

4k
. (61)

Only the equation for the physical problem is extended
with stabilization method. This extension shows nu-
merical stable solutions for high fluid velocities, where
the results are similar to figure 3 (though the time in-
terval is shorter). The drawback is the requirement of
a higher value for mesh diffusivity (i.e. k̆ = 2 for this
example), which yields a less flexible moving mesh.

5. CONCLUSION

Objective of this paper is to present the concept of a
moving mesh method with mesh motion governed by
entropy production. The paper shows that the concept
is feasible, but it also shows that there remain issues
to be solved. The suggested method is capable of re-
sponding to the governing physics and can be applied
to a domain with arbitrary moving boundaries.

One of the main issues is the actual form for surface
traction in the governing equation for mesh motion.
Using a single, constant parameter to govern the be-
haviour of the mesh is not sufficient generic for all
cases. The mesh parameter or diffusivity should de-
pend at least of the mesh size, so there is a higher
resistance to deformation near a boundary layer. A
more advanced form of surface traction should yield a
non-moving, optimal mesh when the equilibrium state
is obtained and include a mechanism to control mesh
quality. This prevents collapsing of elements or ver-
tices moving outside the calculation domain.

Another issue is to determine how the suggested
method should be extended with stabilization meth-
ods. The paper shows that a straightforward imple-
mentation of existing methods is feasible if the dif-
ference between fluid velocity and mesh velocity is
used as convective velocity. Due to the moving mesh,
all stability criteria have to be analysed for required
modifications (local mesh Péclet number, Courant-
Friedrichs-Lewy number). It could be interesting to



extend the PDE(s) for mesh motion with a stabiliza-
tion method.

The paper is restricted to a single physical phenomena
(heat conduction). A combination of physical phe-
nomena (i.e. dynamic fluid flow, diffusion, chemical
reactions, . . . ) should be implemented to see how they
interact. These issues will be studied more elaborately
in the continuation of this research project.
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